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Abstract

Scenarios play an important role throughout the information system development pro-
cess. Scenarios are partial descriptions of system and environment behavior arising in
restricted situations. They are instrumental to the following activities: describing and
clarifying the relevant properties of the application domain, uncovering system require-
ments, evaluating design alternatives, and validating designs. This paper will describe
these roles in the context of an example and explain how computer-based tools can sup-
port the use of scenarios throughout the development process. The thesis of this paper is
based on experience with three such computer-based tools.
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1 Introduction

This paper argues that scenarios have an important role to play in the information
system development process. Scenarios are partial descriptions of system and environ-
ment behavior arising in restricted situations. Both the behaviors and the situations are
expressed in concrete terms. Using scenarios in information system development usually
involves an interplay between describing situations and describing behaviors; e.g., an an-
alyst might propose a situation and decide what behavior would be appropriate to that
situation, or suggest a behavior and determine in what situations that behavior might arise.
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Conventional speci�cation and implementation languages are not designed to support
the description of systems via scenarios. Speci�cations describe the requirements that the
system must satisfy in all cases. Likewise, source codes are sets of instructions su�cient to
handle all possible inputs that the system will encounter. This emphasis on general, all-
encompassing descriptions in software engineering stands in stark contrast to most human
expertise. Cognitive science has demonstrated that human expert knowledge is organized
in chunks, which recognize and respond to speci�c situations [1]. Human problem solving
tends to be highly situated, i.e., people respond to details of the situation as it unfolds
rather than carry out detailed plans that have been worked out in advance [19]. This
incompatibility between software engineering notation and human expertise causes severe
di�culties in requirements elicitation and system validation. System analysts must elicit
from domain experts general properties of the application domain, and general rules of
behavior that the system should follow. Experts may be able to o�er such rules, but when
they are presented with particular hypothetical situations the experts are likely to raise
issues that are not accounted for in the general rules. Likewise, validating the implemented
system against client intent involves evaluating the system's behavior in speci�c situations.

Scenarios have attracted interest lately in the human-computer interaction (HCI) com-
munity, as a way of describing sequences of interactions between systems and users [5, 16].
Campbell notes [4] that they can be used to illustrate how a user might accomplish partic-
ular tasks with the system, to evaluate system usability, to guide interface design, and to
test theories of human-computer interaction. There has been limited discussion in the soft-
ware engineering community of their use for describing, critiquing and explaining system
behavior [2, 8]. Empirical studies have shown that designers evaluate designs by mentally
simulating scenarios [9].

We claim that the signi�cance of scenarios is greater than even these studies suggest.
Scenarios are pervasive throughout the software development process, and are important
for any system that is situated in a complex environment, not just systems with human-
computer interfaces [12]. Furthermore, computer-based tools can enable scenarios to be
realized as explicit artifacts. Automated retrieval, execution, etc. of scenarios can supple-
ment and support the activities that software engineers perform mentally on scenarios at
the present time.

In what follows, four di�erent uses for scenarios will be discussed:

� describing and clarifying the relevant properties of the application domain,

� uncovering system requirements,

� evaluating design alternatives, and

� validating designs.

The rest of the paper is structured as follows: Section 2 introduces the example that
we will use as illustration, the design of a tra�c-light control system for a 4-way intersec-
tion. Section 3 elaborates our de�nition of a scenario. Section 4 introduces some scenario



processing capabilities that we are developing. Section 5 illustrates our points regarding
the di�erent uses for scenarios by appealing to the 4-way intersection example. Section 6
enumerates the kinds of automated support that computer-based tools might be able to
provide for scenarios in these activities, and describes and assesses the tools that we have
developed so far for scenario processing. Section 7 summarizes and concludes the paper.

2 An Example Application

The following problem will be used throughout this paper as a focus for discussion.
Consider an intersection between two roadways of two-way tra�c. At the point of inter-
section each roadway has one or more approach lanes for through tra�c in each direction,
and an approach lane for tra�c turning left through the intersection. Design a system to
control the tra�c lights at this intersection in such a way as to optimize tra�c 
ow. The
system can utilize sensors to sense passing vehicles, and computers to analyze the tra�c

ow and adjust light timing and sequencing as appropriate.

This problem is quite simple compared to the problems that designers of large software
systems must face nowadays; nevertheless it provides abundant illustrations of scenarios in
use. It is also an area of current active technological development. The British Govern-
ment's Road Research Laboratory has recently developed a system called Microprocessor-
Optimized Vehicle Actuation (MOVA) that alters light timings to minimize the amount
of time vehicles have to wait at intersection [10]. The City of Los Angeles has designed
and implemented a system called Automated Tra�c Surveillance and Control (ATSAC)
that is currently being used to control tra�c at over one thousand intersections [20]; by
1998 all 4,000 signalized intersections in the city will be integrated into the system [18].
Computer-controlled tra�c signals are increasingly being recognized as having a critical
role to play in relieving congestion, and reducing fuel consumption and emissions, and o�er
a cost-e�ective alternative to building new freeways and rail lines in urban settings.

Although individual tra�c signal control systems have limited complexity, they must
interact with a complex environment, namely vehicular tra�c 
ow. The designer of such
a system must make sure that the important characteristics of this environment have been
taken into account.

3 A Scenario is ...

This section will elaborate upon our high level, initial characterization of scenarios,
namely that scenarios are partial descriptions of system and environment behavior arising
in restricted situations.

Scenarios are partial descriptions because they need not completely specify all the states
that comprise a behavior, nor need they completely specify all the attributes of any given
state. The intent is to allow the communicator of a scenario to provide only those parts of
the description that are relevant to the scenario. For example, it is this characteristic that



allows one to describe a scenario of a car moving through an intersection, without mention-
ing the number of passengers, or describing the buildings located around the intersection.

Scenario descriptions are formed of two parts | behavior and situation. These are
expressed using the same constructs, but kept separate for purposes of focus, a distinction
we will explain shortly. The behavior and the situation are each a partial ordering of states
and transitions. Ordering between states and composition of partially ordered states are
speci�ed by means of the following common relations [11]: sequentiality (e.g., one state
must follow another, or one behavior must follow another), partial and total concurrency
(e.g., two events must take place at the same time), repetition, permutation, inclusive and
exclusive or (e.g., event1 or event2 but not both), negation (e.g., event3 is not to occur)
etc. For example, the behavior of a car moving through an intersection may be speci�ed
as a sequence of states (car in front of intersection, car inside intersection, car beyond
intersection). Note that the scenario communicator has a variety of options for describing
such a behavior | as an alternative to the sequence of states just mentioned, he/she could
instead provide a sequence of transitions (car approaches the intersection, car enters the
intersection, car leaves the intersection), or a combination of states and transitions (e.g.,
car is to the north of the intersection, car enters the intersection, car is to south of the
intersection). These alternatives allow the communicator in each case to describe the same
partial behavior, but with respect to di�erent attributes of the system and environment.
This illustrates how the communicator may describe partial behaviors so as to focus on
desired portions of system and environment behavior.

Another aspect of behavior which is separate from the aforementioned partial descrip-
tion of states and transitions is the rationale of the scenario. Rationale is formalized in
terms of a completely distinct set of relations among states and transitions. Such rela-
tions include triggering, enabling, and restraining. The e�ect of these is to further restrict
the behavior described by the scenario. Again considering any of the previous scenarios
about cars moving through an intersection, we know that entering the intersection is not
an unconstrained transition. Rather, there are both enabling conditions which make entry
into the intersection possible (green lights, : : : ), as well as restraining conditions which
prevent it (red lights, : : : ). Such conditions on the temporal orderings within scenarios are
common.

A scenario's situation is speci�ed using the same constructs as its behavior, but is kept
separate from that description in order to distinguish focus. Typically, the situation is
where we would state background assumptions on the initial state of the scenario, and on
the progress of the scenario (e.g., invariants that must hold throughout). For example, in
the above the scenario communicator has focused on the movement of the car. The situation
is the state of the tra�c light. The situation expresses how the tra�c light changes (red
to amber to green to red : : : ). A change of focus by the scenario's user (e.g., focusing on
how the tra�c light responds to the presence or absence of cars) will cause behaviors to be
reclassi�ed such that the car's activity becomes part of the situation and the tra�c light's
activity becomes part of the behavior of interest. Although the basic formalism we use is
similar to that in other scenario-based research, the separations we make between behavior



and situation, and between rationale and temporal orderings, are relatively novel.
The focus of a scenario is often a consequence of the scenario's intended communicative

function. That is, when a scenario is being used to demonstrate some point about system
functionality, either the situation or the behavior is being demonstrated. The scenario may
be describing the behavior expected in a given situation, or a situation in which a given
behavior is expected to occur.

Distinct from the above discussion is the abstraction level at which a scenario is de-
scribed. It is crucial that scenarios be expressible in concrete terms, yet at arbitrary levels
of abstraction. This is accomplished by reifying abstract concepts as concrete instances.
For example, suppose a hierarchy of concepts included \moving-vehicle," \car," and \Ford
Taurus," then any one of those abstract concepts could be \rei�ed" into an object (or mul-
tiple such objects) to be used in scenarios. This capability allows the analyst to describe a
behavior at the highest level of generality, rather than at a lower level which might require
details immaterial to the intent of the scenario communicator. With regard to our exam-
ple, the intersection concept has been rei�ed as a generic instance of an intersection which
is used instead of some speci�c intersection. Alternatively, if the attributes of a speci�c
intersection were important to the scenario communicator, then the more speci�c instance
would be used. This illustrates once again the pervasive role focus plays in determining
what is important and thus what should and should not be included in a scenario.

Although scenarios can incorporate abstractions, it is important that scenarios not be
too abstract or general, lest they ignore important factors in the situation. It is not always
obvious a priori what factors in a situation have impact on a scenario. For example, one
might imagine that it is unnecessary to describe the buildings surrounding an intersection
when designing a tra�c light controller, but this is not always the case. Driveways into and
out of the surrounding buildings can in
uence tra�c 
ow; so can displays in surrounding
store windows. Scenarios are used to make these in
uences explicit in realistic situations,
so that designers can take them into account. We will see numerous examples of this
throughout the paper.

4 Three Example Systems

As part of our overall e�ort at understanding and supporting the use of scenarios, we
have developed or are developing three scenario processing capabilities. These have all been
integrated with the our knowledge-based system for supporting requirements acquisition,
called ARIES (Acquisition of Requirements and Incremental Evolution into Speci�cations)
[13, 14]. This section introduces the systems brie
y, so that the reader may have some
understanding of how automated tools can make use of scenarios. At the end of the paper,
after the uses of scenarios have been surveyed, we will revisit these systems and further
categorize their capabilities.

The Requirements Acquisition by Demonstration (RAD) system is intended to be used
by non-programming application domain experts to create application domain scenarios
in which multiple objects are interacting with their environment [15]. The scenarios are



Figure 1: RAD demonstration interface



constructed by manipulating a graphical depiction of a situation into which the system
being designed will be introduced, such as the depiction of a tra�c light system shown
in Figure 1. A user can construct or modify domain speci�c objects, assign behaviors to
individual objects in the situation, and describe the rationale among the objects interact-
ing in the situation. An interactive forms-based dialog is used to describe the behavior so
that the scenario can be animated. RAD also allows the domain expert to describe sce-
narios at di�erent levels of abstraction as well as describe the focus for the scenario being
demonstrated.

The ARIES Simulation Component (ASC) addresses validation of speci�cations to make
sure they encompass the right behaviors. In particular, ASC allows an analyst to state
validation questions as scenarios which ASC then answers via simulation. The general form
of the validation question is: \Does some speci�c behavior happen in the given situation."
The ASC simulator answers this question by determining if the behavior is realizable,
sometimes realizable, not realizable, or sometimes not realizable in the current speci�cation.
ASC di�ers from other simulation based tools in that it uses scenarios to address the
problems of reducing irrelevant simulation data, simulating incomplete speci�cations, and
reducing the size of the behavior space to consider.

ASC aids an analyst in abstracting out of the speci�cation an appropriate simulation
model, called a specialized speci�cation. The specialized speci�cation | based on the
context of the validation question's behavior and situation | preserves the details of system
behaviors that have a bearing on the validation question scenario, and suppresses other
details. If the speci�cation is incomplete, the specialized speci�cation is augmented in order
to make it executable, as in the PAISLey simulator[21]. This augmentation is incorporated
as part of a validation question's situation. Finally, scenarios may be used to capture
simplifying assumptions, also as part of a validation question's situation. In general, the
specialized speci�cation can be thought of as a slice through the speci�cation's overall
behavior space which includes only those behaviors concerned with the validation question
scenario.

ARIES has an on-line instruction facility that employs scenarios to train users of the
ARIES system. Each scenario describes a sequence of actions that a user might take
in performing some task when using the system. The system automatically sets up a
situation in which the task is appropriate to perform: it initializes the user's workspace,
and displays on the screen those elements of the workspace that the user will manipulate
while performing the task. When the user activates a training scenario, the system brings
up a window that shows the steps in the scenario, as shown in Figure 2. The display shows
a three-level hierarchy of structure in the examples: tasks to be performed (e.g., \Perform a
complex evolution"), actions to complete as part of the task (e.g., \Find transformation"),
and individual buttons to mouse on or text to type (e.g., \modify-spec"). When the mouse
is placed over one of the action descriptions, a detailed description of each input required
appears in a documentation window. The left column of the display indicates the analyst's
progress through the example:\C" indicates that the action has been completed, and an
arrow indicates the action that should be performed next. The instructional system tracks



the user's progress through the scenario, and allows him or her to make detours from it at
any time.

Figure 2: An instructional scenario

5 Roles of scenarios

We use the controller for tra�c lights of a 4-way intersection as a common example
throughout this section. This is intended as an intuitive example (of a system we are all fa-
miliar with) that illustrates the activities and corresponding capabilities we are postulating
are useful.

5.1 Describing and clarifying the relevant properties of the application

domain

Curtis et. al. [7] cites \the thin spread of application domain knowledge" as an impor-
tant cause of development e�ort and mistakes in large software systems. Capturing domain
knowledge in the form of scenarios can alleviate this problem. Scenarios are also useful to
validate our understanding of domains.

In the context of our 4-way intersection example, examples of domain properties that we
would wish to ascertain include vehicular 
ow and velocity pro�les of vehicles approaching,
traversing and departing intersections, safety requirements in the form of bounds on amber
light times, the lengths of time it takes the tra�c in an intersection to clear out (when the
lights change), etc. We examine these in more detail in the following subsections.



Vehicular 
ow around intersections: Vehicle behavior in the vicinity of intersec-
tions can be ascertained by considering a variety of typical situations (when approaching a
clear intersection with a green light, when in a line of tra�c, when approaching a red light,
when accelerating on exit from an intersection, etc.).

From this we would determine, for example, lower bounds on the typical distances
before and after intersections at which vehicles are 
owing at full speed (i.e., have not
begun decelerating in approach to the intersection, and are not still accelerating having
traversed an intersection).

We would also determine that, in general, the longer the green light time (i.e., the longer
each light stays green before turning to red and the next light in the sequence turning to
green), the better the average throughput (because each change of lights necessitates the
expense of stopping all tra�c from entering until tra�c within the intersection has cleared
out | i.e., \context switching" in our domain). An actual scenario supportive of this is
that of the tra�c lights that used to be on highway 101 in California (a very busy route |
freeway most of its length but interrupted in a few places to allow cross tra�c) as it passed
through Santa Barbara; anyone who has driven highway 101 through this intersection knows
the additional delays incurred by bringing freeway tra�c to a halt, and anyone who has
waited to use one of the streets crossing highway 101 at this point knows the potentially
long wait (several minutes) for a green light (indeed, signs advised drivers to turn o� their
engines while waiting!).

Bounds on light times: Scenarios can be applied in deriving quantitative safety
bounds. For example, consider the task of �nding the lower bound on the duration of the
amber light, in the transition from a green light to a red light. The following is a relevant
scenario:

Consider the situation of a vehicle approaching an intersection at the time
the light changes to amber. The behavior required of the vehicle is that it either
comes to a halt before entering the intersection, or enters the intersection prior
to the signal changing to red. This can be used to determine a lower bound on
the amber period | too short a period would make it impossible for a vehicle
approaching at the legal speed limit to either stop (based on driver reaction
time and vehicle braking capacity) or have entered the intersection (assuming
continued movement at maximum legal speed).

Time for the intersection to clear: In a similar manner to determining bounds on
light times, scenarios can be used to determine the time it will take for an intersection to
clear of vehicles after a light change:

Consider the situation of a vehicle that enters an intersection at the last pos-
sible instant of an amber light, and compute the time required by the behavior
in which the vehicle exits the intersection.



Consider the situation of several vehicles waiting in the intersection to turn
left (as many as can �t in the intersection) and compute the time required by
the behavior in which they go from their stationary positions, through their
turn, and out of the intersection.

Analytic techniques come into play to perform the actual calculations, but note that a
scenario (or several scenarios) provides context within which to do these calculations.

In all these examples, it is the concrete nature of scenarios that identi�es what domain
properties are relevant, and suggests means to clarify their details.

5.2 Uncovering Requirements

Given a candidate design, the domain expert may draw upon scenarios from the real world
to uncover further requirements that might impinge upon the design. Failure to consider
these scenarios makes it much more likely that these requirements will be overlooked.
In other words, the context provided by real-world scenarios is useful in bringing into
consideration issues that lie outside the idealistic boundary we might otherwise have been
tempted to draw around a system description.

Placement of loop detectors: Consider the following description on the choice of
placement of loop detector (sensors that detect the passage of vehicles) (Figure 3), taken
from Rowe [18]:

\System detectors are placed in either of two con�gurations: in each marked
lane at least 250 feet upstream of the signalized intersection or 100 feet on the
departure side of the nearest upstream intersection which is signalized. The sec-
ond option is more economical because of shorter conduit runs to the nearest
intersection controller, but can only be used where there are no signi�cant ad-
ditions or losses of tra�c between the detector and the downstream intersection
and where the distances between intersections are not too great."

First, note the quantitative bounds on detector placement: : : :at least 250 feet upstream

of the signalized intersection or 100 feet on the departure side of the nearest upstream

intersection which is signalized : : : | presumably these bounds were arrived at from an
analysis of typical tra�c 
ow to determine where \normal" tra�c 
ow could be measured
by sensors (the vehicular-
ow example of section 5.1).

Second, note the quali�cation: : : : but can only be used where there are no signi�cant

additions or losses of tra�c between the detector and the downstream intersection and : : : .
This is precisely the sort of requirement that would be uncovered by considering real-world
scenarios, e.g., a parking lot between the two intersections that feeds extra tra�c into the
road downstream of the point where the 100 foot sensor would go. We see the extracted
description as the codi�cation of a mix of domain knowledge and special-case reasoning.



Figure 3: Placement of system detectors

Downstream blockage / shortcutting: Domain considerations (section 5.1) sug-
gested that the the longer the green light time the better; at this point, therefore, we might
expect a domain expert to seek \stress" scenarios illustrating disadvantages of a very long
green light. Two such scenarios that the domain expert might come up with are:

Downstream blockage | a too-long green light lets so much tra�c through
so quickly that it backs up at the next intersection down the street, nullifying
the advantage of the lengthy green light time.

Detouring | a too-long green light, and therefore too-long red light in some
other direction(s), leads to people �nding alternative routes around the inter-
section, e.g., residential side streets, thus nullifying the intended use of major
thoroughfares.

Notice that both these scenarios uncover pertinent aspects from activities beyond the
single intersection that is our primary concern | the �rst expands consideration to include



the next intersection along the street, while the second deals with how drivers might react
to circumvent the behaviors we had planned for them.

5.3 Evaluating Design Alternatives

Scenarios help while investigating alternative designs and requirements. Speci�c scenar-
ios are especially useful for highlighting the crucial di�erences between design alternatives;
they aid both in establishing what the di�erences might be (as in the other sections, through
consideration of speci�c cases), and in serving as focal points around which to discuss rela-
tive importance (i.e., taking into account the relative frequencies at which scenarios occur,
and the relative (dis)advantages of each).

Whether or not to have a left-hand turn arrow? A scenario that demonstrates
the utility of a left-hand turn arrow is one in which during the time of a complete light
cycle, more than three vehicles arrive along some direction wishing to turn left, and while
that direction's light is green, there is continual heavy tra�c in the opposing direction
(meaning that left turns can be done only on the light changing to red, when the opposing
tra�c halts, and the three vehicles already in the intersection can complete their left turn).
Ultimately, the accumulation of tra�c wishing to turn left �lls the left hand turn lane and
backs up into the straight lane, impeding the 
ow of all tra�c through the intersection.

Applying this same tra�c 
ow behavior to a di�erent situation, that of an intersection
with a separate left-hand turn arrow, shows how the left hand turning tra�c is allowed
through, and does not therefore back up.

Conversely, a scenario in which there is sporadic tra�c 
ow in the opposite direction,
or only occasional vehicles wishing to turn left, illustrates how tra�c 
ows satisfactorily
even without a left-hand turn arrow, and may even demonstrate better overall throughput
for the intersection (because of not having to devote some of the light cycle time aside
speci�cally for left hand turns).

Balancing the considerations that arise in each of these scenarios provides the analyst
with the motivation for choice of one design over another.

Whether to coordinate closely spaced signals? We have already observed that
tra�c blockage can occur when tra�c waiting at one signal backs up as far back as another
signal. This is especially likely in the case of closely spaced signals. Two alternative designs
to dealing with this are to either coordinate the light cycles of those two signals, or to leave
those signal cycles uncoordinated, but have short cycle times.

The choice will depend on the situation. The former design | coordinated cycles | is
appropriate for scenarios of heavy tra�c 
ow, with an objective of maximizing throughput.
For example outside our o�ce building is a lot of commuter tra�c 
owing along a short
cross street that intersects two parallel, heavily traveled streets; since the objective of tra�c
planners in this situation was (presumably) to maximize throughput, the light cycles at the
intersections of the cross street with the two other streets are carefully coordinated, allowing



long green lights (and thus good throughput), but avoiding downstream blockage along the
cross street by coordinating those green light times. Conversely, another Los Angeles
situation is that of the Wilshire shopping district; here, the roadside stores welcome stop-
and-go slowly moving tra�c, because it gives people the opportunity to notice the stores
they are passing. Thus in this area, short light cycle times avert downstream blockages
(it is still an objective that tra�c 
ow, albeit slowly) and produce the kind of tra�c 
ow
desired for a shopping district.

5.4 Validating Designs

Analysts and domain experts often use scenarios informally to validate designs through-
out the development process. They employ their knowledge of the domain and the current
design to develop and reuse individual scenarios which selectively stress the current design
while insuring that the requirements are satis�ed. This approach di�ers from exhaustive
testing in that it neither requires the design to be complete, nor requires the commitment
of resources necessary for exhaustive testing. The following paragraphs demonstrate the
use of scenarios which stress important parts of a design.

Amber light duration: Restating the issues relating to the duration of an amber
light: If it is too short, cars will end up in the intersection when the light turns red. If
it is too long the intersection becomes idle unnecessarily or the amber may be ignored by
motorists. To address these problems an analyst has selected a design in which the amber
duration is as short as possible, yet su�ciently long to ensure our safety concerns. Given
a speci�cation with this bias, an analyst might construct the following validation scenario
to stress the safety portion of the requirements:

Situation: A car is approaching an intersection and the controlling light turns
amber. Consider the expected speed of the car and the rate at which the car
can decelerate.

Behavior: Does the car have time to either continue through the intersection
before the light turns red or come to a stop before entering the intersection?

While the above scenario represents a whole class of behaviors, analysts and domain
experts do not exercise all possible instances of this class. Instead one or more representative
behaviors are selected. In this case, since the concern is safety, the analyst selects the
worst case one, i.e., the highest expected speed and the slowest expected deceleration rate.
Con�dence that this executes properly translates into con�dence that the entire class of
scenarios executes properly.

Coordinated lights vs. short lights: Selection of one design over the other in the
case of coordinated lights verses short duration lights depends on the performance of these
designs under varying, expected tra�c conditions. Scenarios allow the analyst to quantify
these conditions as alternative situations and then via simulation stress each of the designs
with respect to these situations to determine whether the desired behavior occurs.



The above examples illustrate how scenarios serve three roles in design validation. First,
scenarios are used to state user expectations (i.e., in a given situation, what behaviors does
the analyst expect?). These expectations may either be bad behaviors which should not
occur or be good behaviors that should occur. ASC refers to this class of scenario as a
Validation Question.

Second, a scenario situation is used to justify focusing execution on speci�c parts of the
behavior space to the exclusion of others. That is, with respect to a validation question,
some parts of the speci�cation are more relevant than others. This realization allows the
analyst to expend signi�cantly less e�ort in order to achieve executability as opposed to
making the entire speci�cation executable and then having to deal with the resulting myriad
of data.

Third, scenarios can be used to approximate behavior via concrete depictions at an
appropriate level of detail. This idea is based on the thesis of this paper, that acquisition,
formalization, and reasoning (in this case, execution) of scenarios, within well constrained
situations, is easier than doing the same for abstract descriptions of behavior. Such ap-
proximations allow the analyst to facilitate early executability and hence design validation.

The utility of each of the above validation scenarios is that the analyst is able to validate
the design during the development process rather than waiting until the entire design has
been completed, thus uncovering latent requirements and design errors and reducing the
amount of rework necessary because of errors discovered late in the development process.
Guindon in [9] describes this process with respect to mental simulations. ASC [3] provides
computer support for this same activity.

6 Computer-Based Support for Scenarios

We have seen many ways that people use scenarios in the previous examples. There are
also many ways that computer-based tools can support scenario processing. The following
is a summary of the major kinds of computer-based processing of scenarios that we believe
are feasible, and a discussion of the contributions of the systems that we have built in each
area.

6.1 Recording scenarios

The most fundamental function that computer-based tools can provide is the means
to record scenarios; this serves as a prerequisite for any other computer-based support.
Argumentative hypermedia tools such as gIBIS [6] can serve this purpose. Such tools use
hypertext nodes to record the arguments for or against particular design choices. One form
of argument can be whether or not the system supports a particular scenario, described
in natural language. Unfortunately, recording scenarios in natural language limits their
usefulness, since computer-based tools cannot provide much assistance in processing the
scenarios. Tools that can record scenarios formally in some fashion are likely to be more
useful.



Our work has focused more on specialized notations that formalize the situation and
behavior in the scenario. In ASC scenarios are expressed as path expressions [11], a notation
designed to describe sequences of events. The ARIES representation for states and events
[14] may be used to describe scenario situations. In RAD users �rst create a domain-
oriented model (an interactive depiction) of a situation which contains objects in their
environment, and then describe the behavior exhibited by the objects in that situation.

6.2 Retrieving scenarios

Once a group of scenarios has been collected and recorded, it is important to be able
to retrieve them whenever they are relevant. For example, when a designer is trying to
develop an algorithm for selecting the duration for the left-turn signal, he or she should
be able to retrieve all scenarios involving left-turning tra�c, or which assign particular
durations to the left-turn signal.

At the present time we have made no special provision for retrieving scenarios or pieces
of scenarios beyond the general mechanisms within ARIES for storing and retrieving re-
quirements information in a knowledge base.

6.3 Executing scenarios

Executing scenarios can uncover missing or inconsistent information in the scenarios,
and in the system being designed. By walking through the scenario and comparing it to a
domain model one can determine whether the scenario is missing key steps, and whether
implicit assumptions are being made that were not recorded in the scenario. Computer-
based testing tools can also use scenarios to drive system execution, and check whether or
not the system behaves as indicated in the scenario.

ASC can drive the execution of a speci�cation using scenarios. ASC uses scenarios
to model the external environment (external relative to the current focus, i.e., validation
question). This enables the analyst to force the simulation to react to speci�c situations,
and validate those reactions. RAD is designed to animate the execution of scenarios, so
that domain experts can validate and critique examples of behavior. The completed RAD
system will be able to check for violations of requirements and domain axioms automatically
as the scenario is being executed, and point out the problems to the user.

6.4 Visualizing scenarios

The power of scenarios in highlighting concrete details of system and environment be-
havior is further enhanced if the scenarios can be visualized in domain terms. For example,
representations of vehicles moving through intersections are more perspicuous to most
viewers than animated state-transition diagrams of the same scenarios. Computer graphics
tools for animating behavior within situations are an important means for supporting this
visualization process.



The domain-oriented depictions in RAD are intended to provide this visualization ca-
pability. We expect that giving domain experts such domain-oriented depictions to work
with will help uncover important domain properties and requirements that might other-
wise be overlooked or ambiguous if the scenarios were described using text. For example,
depending on the frame of reference, there are three interpretations for the phrase, \The
truck in front of the car." The intended frame of reference might be the car or some outside
observer. Each interpretation has a unique visual depiction.

6.5 Monitoring scenario execution

Scenario monitoring involves watching the system as it runs, and detecting whether or
not behavior patterns described via scenarios occur.

The ASC simulator is designed to monitor validation question scenarios. In general
this is a pattern matching activity in which all simulation events are matched against the
validation question scenario as they occur. ASC is then able to inform the analyst of
matches, partial matches, and contradictions as they occur. The analyst then uses this
knowledge to decide whether or not the speci�cation is behaving properly with respect to
the current validation question scenario.

The ARIES instructional system also performs scenario monitoring|however, it mon-
itors actions by users rather than actions by the system. Each scenario's behavior is en-
coded as a sequence of user inputs, where each user input may be a keystroke, a sequence
of keystrokes, or some class of keystrokes. The user's keystrokes are matched against the
scenario description to determine adherence to the training scenario.

6.6 Developing requirements and designs from scenarios

We envision that automated tools will ultimately be able to generate requirements
and designs directly from scenarios. It will then be unnecessary to develop scenarios and
designs separately and compare one against the other. Some systems that demonstrate
such capabilities already exist. For example, the WATSON system can take as input a
scenario describing a proposed feature for a telephone system, and derive from it a complete
speci�cation of the feature [17].

We are providing some capabilities along these lines in RAD. The system provides a
set of generic building blocks to let domain experts express the domain speci�c concepts
that represent the objects and their situation as well as the behavior of the objects in
the scenario. They will be able to express the triggering and restraining conditions in the
scenarios that must be satis�ed at particular states in the scenario. In this way the scenario
can be gradually transformed into a rule specifying a particular class of system behavior.
Further work would be required to recognize and resolve con
icts between such rules,
combine speci�c rules and generalize them into more complete speci�cations of behavior.



6.7 Processing scenarios e�ectively

The extent to which such automated support for scenario processing is e�ective depends
heavily upon being able to refer to some existing body of formalized domain knowledge.
Without such domain knowledge, scenarios are cumbersome to state, and automated rea-
soning on scenarios is likely to yield nonsensical conclusions. Suppose, for example, that
in writing the scenarios described in the previous section, it was necessary to de�ne each
time what a vehicle was, what a roadway was, what tra�c 
ow was, etc. Recording the
scenarios would quickly have become a very burdensome process. The RAD system pro-
vides a set of useful scenario building blocks that the user can employ and further compose,
easing the task of capturing scenario descriptions. Retrieval of scenarios presupposes some
sort of content-oriented classi�cation of scenarios; a knowledge base of terminology for
classi�cation would be needed for this purpose.

If a design has already been developed, it may be possible to write scenarios in terms of
the concepts already identi�ed and de�ned in the design description. This does not help for
scenarios that are being articulated prior to design, however. In such cases it is necessary
to rely upon some preexisting domain model or knowledge base describing the domain.

7 Summary

This paper has demonstrated the importance of scenarios in the software engineering
process. They are useful throughout the process, not just in speci�c activities such as
testing. They are important not just for systems with human interfaces, but for any
system that interacts with a complex environment, and most likely for complex systems in
general. We believe that they have been neglected in part because tools that support the
recording and processing of scenarios as �rst-class artifacts have been lacking. This in turn
may be a consequence of a tendency within computer science to emphasize the general over
the speci�c, and the abstract over the concrete.

Tools are being developed by us as well as others that support scenario processing.
They are beginning to provide enough in the way of processing support to make them
worth using. Evaluation studies with domain experts and software engineers need to be
conducted in order prove their e�ectiveness.
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